The Skellam Mechanism for Differentially Private Federated Learning

Naman Agarwal, Peter Kairouz, Ziyu Liu[‡] {namanagarwal, kairouz}@google.com, ziyuliu@cs.cmu.edu [†]Alphabetical authorship [‡]Work done while at Google

Background

Differentially Private FL

- While Federated Learning (FL) ensures raw data are kept decentralized, it may not provide formal privacy guarantees.
- Differentially Private FL: client updates (e.g. gradients) are clipped and noised appropriately to give quantifiable, user-level DP guarantees.

Privacy Models

Central DP: Noise@Server

- Full trust on server
- Better utility

Local DP: Noise@Clients

- No trust on server
- Poor utility

Distributed DP

Aims to achieve the utility of Central DP without fully trusting the server by "distributing" trust:

Some Challenges

- Gaussian can't be stored exactly on computers
- Secure Aggregation (SecAgg) operates on a finite group (integers with modular arithmetic)
 - Need discrete DP mechanisms
- Communication efficiency is vital for practical FL
 - Need to consider the trade-off against privacy and utility (both modular & quantization errors)

Symmetric Skellam Distribution

ullet With mean Δ and variance μ , a symmetric *Skellam* RV is given by

$$X \sim \mathrm{Sk}_{\Delta,\mu}$$
 with $P(X_i = k) = e^{-\mu} I_{k-\Delta_i}(\mu)$ modified Bessel functions of the first kind

- A Skellam RV is the difference between two independent Poisson RVs; if the Poissons have the same parameter, then the resulting Skellam is symmetric $\frac{Var = 100}{0.04}$
- Easy to sample: efficient/vetted samplers like np.random.poisson
- Closed under summation: easily switch between central DP and 0.02 distributed DP (adding noise centrally vs locally, see left section) 0.01
- Skellam approaches the continuous Gaussian with larger variance

ric Var = 100on 0.04on 0.03nd 0.02n) 0.01Gaussian Skellam -20 0 20

Skellam Mechanism for Federated Learning

- ullet Skellam Mechanism: $\mathrm{Sk}_{0,\mu}(f(D)) = f(D) + Z ext{ where } Z \sim \mathrm{Sk}_{0,\mu}$
- Prior work: Analysis for scalar queries only, no Rényi DP / zCDP analysis available, no tight compositions → not suitable for FL and high-dim queries. Direct generalizations of existing results to vector queries with composition gives poor performance.
- Our contribution: A practical alternative to discrete Gaussians for central/distributed DP
 - 1. **Tight Rényi DP analysis**: Our RDP guarantee of multi-dim Skellam mechanism is at most $1 + O(1/\mu)$ times that of the Gaussian mechanism (μ = noise variance)

2. Large-scale empirical evaluation: We show that Skellam works well in practice and performs as good as the continuous/discrete Gaussian in FL applications

- ullet Proof Idea $I_{
 u-}$
 - \circ RDP analysis requires bounding ratios of successive bessel functions $I_{
 u}(x)$ \circ Previous work uses a bound that leads to a loose 2nd term and strong L1 dependence
 - We use a tighter bound capturing finer deviations, giving rapid decay of the 2nd term

Empirical Results

Stack Overflow Next Word Prediction

>10⁸ training question/answer sentences grouped by >340k Stack Overflow users

Fig. 1. Skellam matches the central continuous & distributed discrete Gaussian. $\delta = 10^{-6}$. n = 100.

Distributed Mean Estimation

Fig. 2. Skellam matches the Analytic Gaussian Mechanism at n=10000 clients with enough bit-width

See full version (arXiv:2110.04995) for more!

Conclusion

- Skellam performs as good as continuous / discrete Gaussians in realistic settings
- Skellam is a practical alternative to discrete
 Gaussian for central/distributed DP due to
 (a) ease of sampling: friendly to DP and ML
 developers; (b) closure under summation:
 suitable for highly distributed DP settings.
- Code: github.com/google-research/federated/