The Skellam Mechanism for Differentially Private Federated Learning

Naman Agarwal, Peter Kairouz, Ziyu Liu†
{namanagarwal, kairouz}@google.com, ziyuliu@cs.cmu.edu
†Alphabetical authorship ‡Work done while at Google

Background

Differentially Private FL
- While Federated Learning (FL) ensures raw data are kept decentralized, it may not provide formal privacy guarantees.
- Differentially Private FL: client updates (e.g. gradients) are clipped and noised appropriately to give quantifiable, user-level DP guarantees.

Privacy Models

Central DP: Noise@Server
- Full trust on server
- Better utility

Local DP: Noise@Clients
- No trust on server
- Poor utility

Distributed DP
Aims to achieve the utility of Central DP without fully trusting the server by "distributing" trust:

1. Trusted "Third Party"
2. Trusted Hardware
3. Trust via Cryptography

Some Challenges

- Gaussian can't be stored exactly on computers
- Secure Aggregation (SecAgg) operates on a finite group (integers with modular arithmetic)
 ○ Need discrete DP mechanisms
- Communication efficiency is vital for practical FL
 ○ Need to consider the trade-off against privacy and utility (both modular & quantization errors)

Symmetric Skellam Distribution

- With mean Δ and variance μ, a symmetric Skellam RV is given by

$$X \sim \text{Skellam}_{\Delta, \mu} \quad \text{with} \quad P(X_i = k) = e^{-\mu} \frac{\mu^k}{k!} - \frac{\Delta}{2} \left(e^{-\mu} \frac{\mu^k}{k!} \right)$$

- A Skellam RV is the difference between two independent Poisson RVs; if the Poissons have the same parameter, then the resulting Skellam is symmetric

Easy to sample: efficient/vetted samplers like np.random.poisson

Closed under summation: easily switch between central DP and distributed DP (adding noise centrally vs locally, see left section)

Skellam approaches the continuous Gaussian with larger variance

Skellam Mechanism for Federated Learning

- Skellam Mechanism: $\text{Skellam}_{\mu}(f(D)) = f(D) + Z$ where $Z \sim \text{Skellam}_{\mu, 0}$
- Prior work: Analysis for scalar queries only, no Rényi DP / zCDP analysis available, no tight compositions → not suitable for FL and high-dim queries. Direct generalizations of existing results to vector queries with composition gives poor performance.
- Our contribution: A practical alternative to discrete Gaussians for central/distributed DP

1. Tight Rényi DP analysis: Our RDP guarantee of multi-dim Skellam mechanism is at most $1 + O(1/\mu)$ times that of the Gaussian mechanism ($\mu =$ noise variance)

2. Large-scale empirical evaluation: We show that Skellam works well in practice and performs as good as the continuous/discrete Gaussian in FL applications

Proof Idea

- RDP analysis requires bounding ratios of successive bessel functions $I_{\nu}(x)$
- Previous work uses a bound that leads to a loose 2nd term and strong L1 dependence
- We use a tighter bound capturing finer deviations, giving rapid decay of the 2nd term

Applications to Distributed DP

- L2 Clip + Flatten
- Discretize
- Add Skellam Noise
- Unscale
- Unflatten
- Scale
- Randomized Rounding

Empirical Results

Stack Overflow Next Word Prediction

- >10⁸ training question/answer sentences grouped by >340k Stack Overflow users

Distributed Mean Estimation

- $n=10000$, $d=2000$, $k=2$

Skellam matches the Analytic Gaussian Mechnism at $\varepsilon=10^{-4}$. $n=300$. See full version (arXiv:2110.04995) for more!

Conclusion

- Skellam performs as good as continuous / discrete Gaussians in realistic settings
- Skellam is a practical alternative to discrete Gaussian for centralized DP due to (a) ease of sampling: friendly to DP and ML developers; (b) closure under summation: suitable for highly distributed DP settings.
- Code: github.com/google-research/federated/